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• DT reactor requires self heating by alpha particles.

• DT experiments on TFTR and JET can benchmark theory.

• DT on TFTR with monotonic safety factor 
- no alpha instabilities with Pfus≈10.7 MW & βα(0) ~ 0.3%

• TAEs observed in q(0)>1 plasmas: βα(0)~0.02%  
 
• Implications for advanced tokamak reactor :  <βα> ~ 0.5%

 ALPHA DRIVEN INSTABILITIES CAN DAMAGE REACTOR 
WALL AND REDUCE HEATING EFFICIENCY



OUTLINE

• Theoretical predictions of TAE stability confirmed on TFTR

• Reflectometer measurements map internal mode structure 

• Non-linear models, alpha redistribution and loss 



TOROIDICITY-INDUCED ALFVÉN EIGENMODES (TAE):
WHAT ARE THEY? 

• TAEs are shear Alfvén waves in a torus, where toroidicity 
couples m and m+1 modes to form gaps in the spectrum

• Wave-particle resonance can excite discrete TAE modes 
inside the gap in the toroidal shear Alfvén spectrum

• Gap modes are weakly damped - main damping processes
are  radiative, beam and thermal ion Landau damping
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PREDICTION  AND MEASUREMENT OF 
ALPHA DRIVEN TAES IN TFTR

 Theoretical Prediction: Fu, Spong
• Reduce magnetic shear, beam damping and raise q(0)
      

0.20.10.-0.1
0

1

2

3

Time (s)

 Vbeam
1/3 VAlfvén

0

2

4

6
X10-1

˜ B θ
[mG]

Time [s]

Plasma edge n=3

n=4 n=2

0.20.10.-0.1

Unstable TAE

Oak Ridge 
National Laboratory

NBI

25 MW
DT-NBI 

B
B

~
~ 10-8



MODES ONLY SEEN IN DT PLASMAS
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• Modes only seen after DT beams turn off.
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NEW MODES SEEN ONLY IN WEAK SHEAR DT PLASMAS: q(0)>1
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N=4 FREQUENCY LIES INSIDE TOROIDICITY INDUCED GAP 
IN ALFVÉN  SPECTRUM

• Theory predicts alpha driven TAEs localized to inside gap

• Center frequency of gap varies weakly with radius
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CALCULATED CRITICAL βα DECREASES WITH INCREASING  q(0)

• Low shear and high q(0) are destabilizing.

NOVA-K : Guoyong Fu
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Detailed Internal Measurements are Required for Making
 Furthur Progress in Understanding TAEs : Why?

• Theory predicts core localized modes in weak magnetic  

shear region, similar to reactors. 

==> important to confirm core localization

•  Need to understand non-linear dynamics of mode 

saturation and alpha loss.

==> Reflectometry, PCX, lost alpha detectors.
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• Mode appears to moves out radially vs. time

• Edge B is not a good indicator of internal mode amplitude
~

X-MODE REFLECTOMETER MEASURES EVOLVING MODE STRUCTURE
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N=4 MODE BECOMES MORE BALLOONING WITH TIME
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N=2 MODE IS CORE LOCALIZED AND ANTI-BALLOONING

• Frequency ~30% below TAE frequency

• Theory predicts anti-ballooning modes are stable.
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SATURATED AMPLITUDE ROUGHLYCONSISTENT 
WITH NONLINEAR MODEL

 
• Saturated amplitude is sensitive to source  rate of 

resonant alpha particles.
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No Observed Increase in Alpha Loss During TAE
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• 2 MeV trapped alphas intersect mode location 
  and lost alpha probe

• Loss expected near trapped passing boundary 



CENTRAL BROADENING OF DEEPY TRAPPED ALPHA 
PARTICLES OBSERVED IN PRESENCE OF TAE

• Redistribution observed in presence of weak 
TAEs with B/B ~10-5 
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SUMMARY

• Experimental results on TFTR show alpha-driven-TAE 
instability occured as predicted by theory

• Reflectometer measurements confirms core localization

• Observed low saturation levels roughly consistent with
non-linear model

• Possibility of internal alpha redistribution but no alpha loss



Implications and Future Directions

• Observation of TAEs in weak shear q(0)>1 plasmas of
concern for advanced tokamak concepts. 

• Similar Alfvén modes observed in STs (START) and 
stellarators (W7-AS)

• ITER like plasmas will have many high-n modes 
instead of a few low-n modes 

• Need more internal measurements of energetic particles 
and mode structure to test nonlinear models.


